Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle

نویسندگان

  • C. H. Lear
  • Y. Rosenthal
  • H. K. Coxall
  • P. A. Wilson
چکیده

[1] Paired benthic foraminiferal trace metal and stable isotope records have been constructed from equatorial Pacific Ocean Drilling Program Site 1218. The records include the two largest abrupt (<1 Myr) increases in the Cenozoic benthic oxygen isotope record: Oi-1 in the earliest Oligocene ( 34 Ma) and Mi-1 in the earliest Miocene ( 23 Ma). The paired Mg/Ca and oxygen isotope records are used to calculate seawater dO (dw). Calculated dw suggests that a large Antarctic ice sheet formed during Oi-1 and subsequently fluctuated throughout the Oligocene on both short (<0.5 Myr) and long (2–3 Myr) timescales, between about 50 and 100% of its maximum earliest Oligocene size. The magnitudes of these fluctuations are consistent with estimates of sea level derived from sequence stratigraphy. The transient expansion of the Antarctic ice sheet at Mi-1 is marked in the benthic dO record by two positive excursions between 23.7 and 22.9 Ma, each with a duration of 200– 300 kyr. Bottom water temperatures decreased by 2 C over the 150 kyr immediately prior to both rapid dO excursions. However, the onset of each of these phases of ice growth is synchronous, within the resolution of the records, with the onset of a 2 C warming over 150 kyr. We suggest that the warming during these glacial expansions reflect increased greenhouse forcing prompted by a sudden decrease in global chemical weathering rates as Antarctic basement silicate rocks became blanketed by an ice sheet. This represents a negative feedback process that might have operated during major abrupt growth phases of the Antarctic ice sheet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma)

An apparent mismatch between published oxygen isotopic data and other paleoclimate proxies for the span from 26–16 Ma is resolved by calibration against global sea-level estimates obtained from backstripping continental margin stratigraphy. Ice-volume estimates from calibrated oxygen isotope data compare favorably with stratigraphic and palynological data from Antarctica, and with estimates of ...

متن کامل

Large-scale glaciation and deglaciation of Antarctica during the Late Eocene

Approximately 34 m.y. ago, Earth’s climate transitioned from a relatively warm, ice-free world to one characterized by cooler climates and a large, permanent Antarctic Ice Sheet. Understanding this major climate transition is important, but determining its causes has been complicated by uncertainties in the basic patterns of global temperature and ice volume change. Here we use an unusually wel...

متن کامل

CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet

[1] The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the “greenhouse” of the early Eocene to the “icehouse” of the present day. Carbonate carbon isotope records of the period immediately following the m...

متن کامل

Orbital forcing of the Paleocene and Eocene carbon cycle

Multimillion-year proxy records across the Paleocene and Eocene show prominent variations on orbital time scales. The cycles, which have been identified at various sites across the globe, preferentially concentrate spectral power at eccentricity and precessional frequencies. It is evident that these cycles are an expression of changes in global climate and carbon cycling paced by astronomical f...

متن کامل

Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene.

Marine sediment records from the Oligocene and Miocene reveal clear 400,000-year climate cycles related to variations in orbital eccentricity. These cycles are also observed in the Plio-Pleistocene records of the global carbon cycle. However, they are absent from the Late Pleistocene ice-age record over the past 1.5 million years. Here we present a simulation of global ice volume over the past ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004